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Abstract - Multimodal Large Language Models (MLLMs) integrate diverse data modalities—including textual descriptions, 

visual content, and contextual signals—into a unified framework for advanced machine learning tasks. In recommendation 

systems, these models offer a more comprehensive approach by combining user behavioral data, product metadata, and visual 

features to enhance relevance prediction. This research explores an end-to-end integration of MLLMs into recommendation 

pipelines, spanning from data preparation and model adaptation in the batch training phase to real-time serving for low-

latency inference. A modular architecture is introduced, built on a pre-trained transformer backbone with modality-specific 

encoders, allowing seamless fusion of multimodal inputs. Empirical evaluations on an e-commerce dataset reveal that the 

proposed MLLM-based recommender outperforms unimodal baselines, leading to higher recall and improved user 

satisfaction. Critical considerations for data alignment, scalability, and interpretability in real-world deployment are also 

discussed. These findings highlight the transformative potential of multimodal learning in next-generation recommendation 

systems. 

Keywords - Multimodal large language models, Recommendation systems, Cross-modal fusion, Personalized content, 

Transformer-based models, Real-time inference.

1. Introduction  
1.1. Background and Motivation 

Recommender systems have become indispensable in 

various digital platforms, including e-commerce, content 

streaming, and social media. Traditional recommendation 

models primarily rely on collaborative filtering and matrix 

factorization, leveraging user-item interaction data such as 

clicks, purchases, and ratings. While these approaches have 

been widely adopted, they often fail to incorporate rich 

contextual information from multiple modalities, such as 

textual product descriptions, customer reviews, and visual 

content. As a result, they struggle with ambiguous or sparse 

user interaction data, limiting their ability to generate 

personalized recommendations. 

In recent years, the field of deep learning has advanced 

significantly, particularly with the rise of Large Language 

Models (LLMs) such as BERT and GPT. These models have 

demonstrated state-of-the-art performance in natural 

language processing tasks, including text classification, 

summarization, and question-answering. However, most 

LLMs are inherently text-centric and do not effectively 

process multimodal information, which is crucial for modern 

recommendation systems. User preferences are often 

influenced by a combination of text, images, and structured 

metadata, making exploring architectures that can integrate 

multiple data modalities is necessary. 

1.2. Rise of Multimodal Large Language Models(MLLMs) 

Recent research has introduced Multimodal Large 

Language Models (MLLMs) to overcome the limitations of 

unimodal recommendation models. These models extend the 

capabilities of traditional LLMs by integrating specialized 

modality-specific encoders (e.g., vision transformers for 

image processing) into a shared Transformer-based 

architecture. By aligning textual, visual, and contextual 

information into a unified embedding space, MLLMs enable 

a more comprehensive understanding of user intent and 

product relevance. 

In the context of recommendation systems, MLLMs 

offer distinct advantages: 

• Enhanced Representation Learning: MLLMs capture 

richer user preferences by fusing text-based signals (e.g., 

product descriptions and user reviews) with visual 

features (e.g., product images). 

• Improved Disambiguation: When textual descriptions 

are unclear, visual data can provide additional context to 

refine recommendation accuracy. 
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• Cross-Modal Interpretability: Understanding why an 

item is recommended becomes more intuitive when both 

text and images contribute to decision-making. 

 

1.3. Research Gap and Contributions 

Despite the growing interest in multimodal learning, few 

studies have thoroughly examined the effectiveness of 

MLLMs in real-world recommendation scenarios, especially 

in high-volume, latency-sensitive applications. Current 

implementations often either: 

• Focus solely on text-based models, which are missing 

valuable multimodal insights. 

• Use independent feature extractors without fully 

leveraging cross-modal interactions within a 

Transformer framework. 

This research addresses these gaps by proposing a 

structured methodology for integrating MLLMs into 

recommendation pipelines. The key contributions of this 

study are as follows: 

1. Unified Architectural Design: We introduce a modular 

recommendation system that employs a pre-trained 

Transformer backbone augmented with modality-

specific encoders and cross-modal attention 

mechanisms. 

2. End-to-End Recommendation Pipeline: The proposed 

framework spans from data preprocessing and model 

adaptation (Batch Training Phase) to low-latency 

inference (Real-time Serving Phase). 

3. Empirical Validation: Through experiments on a large-

scale e-commerce dataset, we demonstrate significant 

improvements in recall and user satisfaction over 

unimodal baselines. 

This study aims to push the boundaries of personalized 

content delivery by integrating multimodal cues into a 

recommendation framework. The remainder of this paper 

explores the related work, details the proposed methodology, 

and presents experimental findings to support our claims. 

2. Related Work 
2.1. Traditional Recommendation Methods 

Recommender systems have historically relied on 

collaborative filtering and content-based filtering, where 

user-item interactions such as clicks, ratings, and purchases 

are modeled using matrix factorization or latent factor 

techniques. While these methods have been successful in 

many applications, they often struggle with cold-start 

problems and fail to capture rich multimodal context present 

in real-world data. Research has shown that incorporating 

additional signals such as textual descriptions, reviews, and 

images can significantly improve recommendation accuracy. 

However, early models primarily focused on structured 

numerical data, ignoring valuable multimodal cues. 

2.2. Deep Learning for Recommendation Systems 

The rise of deep learning introduced neural collaborative 

filtering and deep hybrid models, where neural networks 

process structured data alongside text-based embeddings. 

Models like DeepFM and Wide & Deep demonstrated how 

combining feature interactions with deep networks could 

enhance predictive accuracy. However, these approaches still 

primarily relied on textual or tabular data and lacked 

mechanisms to efficiently integrate image-based or 

contextual information. 

2.3. Advances in Multimodal Learning 

Multimodal learning has gained significant traction, 

particularly in areas like image captioning, video retrieval, 

and visual question-answering, where text and visual inputs 

must be processed together. Recent advancements in 

transformer-based architectures have enabled cross-modal 

fusion, allowing models to learn from text, images, and 

structured data jointly. Vision-language models such as CLIP 

and ALIGN have demonstrated that aligning textual 

embeddings with visual features improves semantic 

understanding, particularly relevant for recommendation 

tasks. 
 

 

Table 1. Comparison of Recommendation Methods and Performance 

Model Modality Used Strengths Limitations 
Performance (nDCG@10 

/ Recall@20) 

Matrix Factorization 
User-item 

interactions 

Simple, interpretable, 

scalable 

Ignores textual and 

visual context 
0.243 / 0.332 

Text-Only LLM Text metadata 

Leverages NLP 

advancements for 

understanding the 

text 

Cannot incorporate 

visual cues 
0.258 / 0.342 

Image-Only CNN Image features 
Captures visual 

features 

Ignores textual 

meaning and context 
0.217 / 0.305 

Proposed MLLM 
Text + Image + 

Context 

Cross-modal fusion, 

better user intent 

modeling 

Higher 

computational cost 
0.282 / 0.380 
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2.4. Multimodal Large Language Models for 

Recommendations 

Multimodal large language models (MLLMs) extend 

traditional large language models by incorporating modality-

specific encoders that process textual, visual, and structured 

data within a unified framework. Unlike previous hybrid 

models that treat different modalities independently, MLLMs 

apply cross-modal attention mechanisms to dynamically 

learn dependencies between text and images, leading to richer 

item representations. Studies have shown that these 

architectures significantly enhance recommendation 

accuracy, especially in visually driven domains such as 

fashion, home décor, and e-commerce. 
 

2.5. Comparison with Existing Work 

While prior research has explored text-based 

recommendation models, this study differs by introducing an 

end-to-end multimodal recommendation pipeline that 

integrates real-time serving constraints and cross-modal 

fusion techniques. Unlike existing approaches that rely on 

pre-extracted visual features, the proposed model jointly 

optimizes textual and visual embeddings within a 

transformer-based network.  
 

This research bridges the gap between multimodal 

learning and real-time recommendation systems, offering a 

scalable approach applicable to large-scale commercial 

applications. 

3. Proposed Method 
In our approach, an MLLM-based recommender is 

constructed through two principal phases: Batch Training and 

Real-time Serving. 

3.1. Batch Training Phase 

3.1.1 Data Collection and Preprocessing 

A large-scale e-commerce dataset was compiled, consisting 

of: 

• Product metadata: Titles, descriptions, category labels. 

• Visual content: High-resolution product images. 

• User-item interactions: Clicks, purchases, and browsing 

history. 

• Contextual signals: Timestamp, device type, and 

geographic location. 

3.1.2. Text Processing 

• Tokenized using Byte-Pair Encoding (BPE) aligned 

with the pre-trained Transformer model. 

• Retained stopwords where necessary to preserve 

contextual integrity. 

3.1.3. Image Processing 

• Standardized resolution and normalized image data. 

• Extracted visual features using a convolutional neural 

network (CNN) or a Vision Transformer (ViT). 

3.1.4. User Interaction Structuring 

• Modeled user actions into session-based sequences, 

capturing temporal dependencies in browsing behavior. 

3.2. Model Architecture 

The proposed MLLM-based recommendation model 

consists of four key components. (Refer to Figure 1) 

1. Text Encoder 

• A pre-trained Transformer model (such as BERT or 

GPT) processes textual data. 

• Self-attention layers refine embeddings by 

capturing contextual dependencies. 

 

2. Visual Encoder 

• A CNN (e.g., ResNet) or a ViT extracts visual 

feature representations. 

• Projection layers align image embeddings with 

textual representations. 

 

3. Cross-Modal Fusion Layer 

• A cross-attention mechanism integrates text and 

image embeddings into a shared latent space. 

• Image features are incorporated as additional tokens 

within the Transformer model for joint learning. 

 

4. Recommendation Output Layer 

• A fully connected network predicts interaction 

likelihoods. 

• The model is trained for click prediction, rating 

estimation, and personalized ranking tasks. 

 

The Transformer backbone was selected over other 

models due to its ability to handle long-range dependencies 

across multimodal data, improving interpretability and 

alignment between textual and visual inputs. 

3.2. Training Objectives 

The model is optimized using a multitask loss function 

incorporating:  
• Contrastive Loss for Multimodal Alignment 

• Ensures that text and image representations of the 

same product remain closely aligned. 

• Masked Language Modeling Loss 

• Preserves domain-specific textual understanding for 

product descriptions and reviews. 

• Recommendation-Specific Losses 

• Cross-entropy loss for click prediction. 

• Bayesian Personalized Ranking (BPR) for ranking 

optimization. 
 

3.3. Model Evaluation 

To validate model performance, the dataset is split 70-

15-15 for training, validation, and testing. Generalizability 

is assessed by evaluating the model on previously unseen 

product categories. 
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Fig. 1 End-to-End architecture of a recommendation system 
 

Evaluation metrics include: 

• Recall@k – Measures how many relevant items are 

retrieved in the top-k results. 

• Normalized Discounted Cumulative Gain (nDCG) – 

Evaluates ranking effectiveness by prioritizing correctly 

ranked items. 

• Mean Average Precision (MAP) – Captures ranking 

quality across multiple queries. 

• User Satisfaction Score – Derived from implicit 

behavioral signals like dwell time and repeat 

interactions. 

3.4. Real-Time Serving Phase 

3.4.1. System Architecture 

For deployment, the model operates within a 

microservices-based architecture, consisting of: 

• Inference cluster – GPU nodes for multimodal vector 

processing and CPU nodes for business logic. 

• Modular microservices – Separate services for 

embedding retrieval, ranking, and filtering. 

3.4.2. Request Handling and Model Inference 

• Embeddings are retrieved from a pre-computed cache to 

minimize inference latency. 

• Session history, search queries, and recent user 

interactions are included in real-time recommendations. 

• A scoring function ranks retrieved items based on 

multimodal embeddings. 

3.4.3 Optimization Techniques 

• Embedding caching – Reduces computational load by 

storing frequently accessed vectors. 

• Quantization and model distillation – Optimizes latency 

while preserving accuracy. 

• Batching – Aggregates multiple user requests for 

efficient GPU utilization. 

3.4.4. Performance Monitoring and Feedback Loop 

• Key performance indicators (KPIs) such as click-

through rate (CTR) and conversion rate are continuously 

monitored. 

• Real-time anomaly detection triggers fallback 

mechanisms to simpler heuristics when necessary. 
 

4. Experimental Results 
4.1. Experimental Setup 

4.1.1. Dataset 

The evaluation was conducted on a large-scale e-

commerce dataset containing: 

• 100,000 products, each with textual descriptions and 

images. 

• User interaction logs comprise over 1 million click and 

purchase events spanning six months. 

• A 70-15-15 split was used for training, validation, and 

testing, ensuring fair evaluation. 
 

To assess generalizability, the model was additionally 

tested on a different product category unseen during training, 

measuring its adaptability to new data distributions. 
 

4.1.2. Baselines for Comparison 

The proposed MLLM-based recommendation system 

was compared against the following baselines: 

1. Matrix Factorization (MF) – A traditional collaborative 

filtering approach. 

2. Text-Only LLM – A Transformer-based model trained 

solely on textual metadata. 

3. Image-Only CNN – A visual-based model using 

convolutional networks to extract image embeddings. 

Product Metadata 

Product Images 

User Interactions 

Contextual Signals 

Text Tokenization 

Image Feature 

Extraction 

Session Modeling 

Text Encoder 

Visual Encoder 

Cross-Attention Layer 

Recommendation Layer 

Embedding Caching 

Quantization 

Personalized Rankings 

Click Predictions 

Performance Metrics 

Request Batching 

Feedback  

Loop 
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The proposed MLLM integrates both textual and visual 

representations, leveraging cross-modal fusion for improved 

ranking and retrieval performance. 

4.2. Quantitative Evaluation 

4.2.1. Performance Metrics 

The following metrics were used to evaluate the model: 

• Recall@k – Measures the fraction of relevant items 

retrieved in the top-k recommendations. 

 

• Normalized Discounted Cumulative Gain (nDCG@10) 

– Evaluate ranking quality by giving higher weight to 

correctly ranked top items. 

 

• Mean Average Precision (MAP) – Computes the mean 

of average precision scores across all queries. 

• User Satisfaction Score – Derived from implicit 

feedback such as dwell time, repeat interactions, and 

purchase conversion rates. 

 

4.2.2. Results Comparison 

The proposed multimodal model significantly 

outperformed all baselines in nDCG and Recall@20, 

demonstrating the effectiveness of combining text and 

images. While latency increased slightly (+15 ms compared 

to the text-only LLM), caching and model quantization 

mitigated this overhead, keeping the system within 

acceptable real-time constraints
 

Table 2. Evaluation results 

Model nDCG@10 Recall@20 Latency (ms) User Satisfaction Score 

Matrix Factorization 0.243 0.332 12 68% 

Text-Only LLM 0.258 0.342 20 72% 

Image-Only CNN 0.217 0.305 18 66% 

Proposed MLLM 0.282 0.380 35 81% 

4.3. Justification of Performance Improvements 

The proposed MLLM outperforms traditional and 

unimodal approaches due to the following factors: 

 

4.3.1. Enhanced Representation Learning 

• Unlike text-only or image-only models, MLLMs jointly 

encode textual and visual signals, leading to richer user 

intent modeling. 

• Example: A user searching for "red running shoes" may 

get better recommendations as the model understands 

both text-based queries and visual patterns. 

4.3.2. Better Disambiguation 

• If a product has ambiguous textual descriptions (e.g., 

"sleek black dress"), the image features help refine 

recommendations. 

• Example: Text-based models may misinterpret "sleek" 

as either form-fitting or shiny, whereas MLLMs resolve 

this through image embeddings. 

4.3.3. Cross-Modal Interpretability 

• Users trust recommendations when they can see why an 

item was suggested. 

• Example: If a model recommends a blue jacket, it can 

highlight the text that influenced the decision 

("lightweight winter jacket") and show the closest-

matching image. 

 
4.3.4. Improved Generalization on Unseen Categories 

• Since MLLMs learn shared representations across text 

and images, they can make better predictions even for 

new products that lack prior interactions. 

• Example: A newly launched sneaker brand with no past 

user interactions can still be recommended based on text-

image similarity. 
 

4.3.5. Higher Recall & User Satisfaction 

• Users often rely on both descriptions and images when 

making decisions. 

• Example: For categories like fashion and home décor, 

MLLMs significantly increase engagement as users 

respond to visual cues. 

 
4.4. Qualitative Analysis 

User feedback from A/B testing highlighted two key 

observations: 

1. Users preferred multimodal recommendations when 

textual descriptions were ambiguous. For example, 

searches for "casual sneakers" resulted in more relevant 

suggestions when visual features were incorporated. 

2. Image-based refinements improved user satisfaction, 

especially in fashion and home décor categories, where 

visual appeal strongly influences purchasing behavior. 

These findings emphasize that multimodal models not 

only improve ranking metrics but also enhance the real-world 

user experience. 

4.5. Discussion on Limitations and Biases 

While the proposed approach offers significant 

improvements, several limitations and potential biases must 

be considered: 

• Data Alignment Challenges – Ensuring consistent text-

image associations is critical; incorrect mappings can 

degrade performance. 
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• Computational Complexity – Multimodal models 

require more resources than unimodal counterparts, 

which may impact scalability. 

• Bias in User Interactions – Historical user behavior may 

reinforce existing biases, favoring popular products over 

new or niche items. Future work should explore 

debiasing techniques to ensure fair recommendations. 

• Ethical Considerations – Using user interaction data and 

product images raises privacy concerns. Implementing 

privacy-preserving learning methods, such as 

differential privacy, can help mitigate risks. 

5. Discussion 
The results confirm that multimodal large language 

models (MLLMs) significantly enhance recommendation 

accuracy by integrating textual and visual representations.  

Compared to traditional unimodal approaches, the 

proposed method effectively bridges the gap between product 

descriptions and visual cues, improving ranking performance 

and user satisfaction. 

5.1. Practical Implications for Real-World Applications 

This research has significant implications for real-world 

recommendation systems, particularly e-commerce, content 

streaming, and personalized advertising. The ability to 

process both textual metadata and images allows 

recommender systems to: 

• Enhance personalization by aligning multimodal 

embeddings with user preferences. 

• Improve disambiguation in cases where textual 

descriptions are insufficient (e.g., differentiating similar 

fashion items based on images). 

• Increase user engagement by providing more visually 

intuitive recommendations, leading to higher conversion 

rates. 

• Extend to other modalities, such as incorporating audio 

signals in music recommendations or video embeddings 

in streaming platforms. 

These findings suggest that multimodal AI can 

fundamentally improve user experience in recommendation-

driven platforms. 

5.2. Comparison with State-of-the-Art Methods 

The proposed MLLM-based recommender outperforms 

traditional models due to: 

Multimodal fusion – Unlike text-only models, this 

approach leverages both textual and visual signals, reducing 

ambiguity in recommendations. 

Cross-modal attention – The integration of vision 

encoders within the Transformer framework improves 

feature alignment and interpretability. 

Generalizability across categories – Experiments on 

unseen product categories confirm that MLLMs maintain 

strong performance, unlike category-specific models that 

struggle with new data. 

Scalability improvements – The proposed batch training 

and real-time inference optimizations ensure that the model 

remains feasible for large-scale applications. 

These advantages position MLLMs as a compelling 

alternative to existing recommendation algorithms. 

5.3. Addressing Limitations and Future Work 

While the proposed approach achieves strong results, 

several challenges remain: 

• Computational Overhead – Transformer-based 

multimodal models require high processing power, 

making real-time deployment costly. Future work should 

explore model compression techniques such as 

quantization and knowledge distillation to reduce 

inference latency. 

• Bias in Training Data – Recommender systems are 

inherently influenced by historical user interactions, 

which may reinforce popularity biases. Future research 

should focus on fairness-aware training approaches to 

ensure diverse and balanced recommendations. 

• Integration with Additional Modalities – This study 

primarily explores text and image fusion. Future work 

could extend the model to audio, video, or multimodal 

behavioral signals to further enhance recommendation 

quality. 

Despite these challenges, the findings demonstrate that 

MLLMs offer a scalable and effective approach to 

personalized recommendations in multimodal environments. 

6. Conclusion 
This research presents a multimodal large language 

model-based framework for recommendation systems, 

integrating text, image, and contextual features within a 

Transformer-based architecture. By leveraging cross-modal 

fusion, the proposed system effectively aligns multimodal 

representations, resulting in higher recommendation 

accuracy and user satisfaction. 
 

Key contributions of this work include: 

1. A unified multimodal recommendation pipeline, 

combining batch training and real-time inference for 

scalable deployment. 

2. Empirical validation on a large-scale e-commerce 

dataset, demonstrating improved recall, ranking 

accuracy, and user engagement. 

3. Analysis of practical implications, challenges, and future 

directions, positioning MLLMs as a robust alternative to 

unimodal recommendation models. 
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As recommendation systems continue to evolve, 

multimodal AI will play an increasingly critical role in 

enhancing personalization, interpretability, and user 

experience across a wide range of applications. Future 

research should focus on reducing computational costs, 

mitigating bias, and extending multimodal integration to 

additional data sources. 

7. Abbreviations 
• LLM: Large Language Model 

• MLLM: Multimodal Large Language Model 

• BERT: Bidirectional Encoder Representations from 

Transformers 

• ViT: Vision Transformer 

• CTR: Click-Through Rate 

• nDCG: Normalized Discounted Cumulative Gain 
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